UNIVERSIDADE DE SAO PAULO

Instituto de Ciéncias Matematicas e de Computacao

Estudo Comparativo de Frameworks de Automatizacao de
Testes de Ul para Aplicativos iOS

Henrique Forioni de Lima

SAO CARLOS

ICMCE2
&b

Sao Carlos — SP

Estudo Comparativo de Frameworks de Automatizacdo de Testes
de Ul para Aplicativos iOS

Henrique Forioni de Lima

Orientador: Profa. Simone do Rocio Senger de Souza

Coorientador: Ricardo Ferreira Vilela

Monografia final de conclusdo de curso apresentada
ao Instituto de Ciéncias Matematicas e de
Computacdo — ICMC-USP, como requisito parcial
para obtencao do titulo de Bacharel em Engenharia
de Computacao.

Area de Concentragdo: Testes de Software

USP - Sao Carlos
Outubro de 2019

RESUMO

LIMA, H. E.. Estudo Comparativo de Frameworks de Automatizaciao de Testes de UI para
Aplicativos i0S . 2019. 54 f. Monografia (Graduacio) — Instituto de Ciéncias Matematicas e de
Computagdo ICMC/USP), Sao Carlos — SP.

O presente trabalho tem por finalidade comparar trés ferramentas de automatizacio de testes de
UI na plataforma 10S, sendo elas: XCUITest, EarlGrey e KIF. A comparacdo sera feita por meio
de experimentacgao, o qual os trés frameworks serdo aplicados para testar funcionalidades de um
aplicativo desenvolvido pela industria de software. As funcionalidades foram testadas por meio
de casos de testes definidos neste trabalho. Apds a conclusdo dos testes, os frameworks foram
avaliados por meio de critérios de avaliacdo. Alguns dos critérios analisados neste trabalho sao:
tempo de execugdo, documentacdo, configuracdo inicial, depuragdo, interacdo com elementos,

suporte a recursos de gravacao e sincronizagao.

Palavras-chave: Engenharia de Software, Teste de Software, Teste de Interface de Usuadrio,
i0S.

LISTA DE ILUSTRACOES

Figural — Porcentagem da utilizacdo de modelos de iPhone ao redor do mundo. 17
Figura2 — Tela inicial do aplicativo para acessar o fluxo de cadastro 27
Figura 3 — Tela reference a primeira etapa do fluxo de cadastro do aplicativo 27
Figura4 — Tela reference a segunda etapa do fluxo de cadastro do aplicativo 27
Figura5 — Tela pararealizar o Login no aplicativo 28
Figura 6 — Tela para realizar o Logout no aplicativo 28
Figura7 — Tela de contato para acessar a tela de enviar feedback no aplicativo 29
Figura 8 — Tela de enviar feedback no aplicativo 29
Figura9 — Tempo de execucdo (em segundos) dos casos de testes para cada framework 38
Figura 10 — Etapa de configuracdo do XCUITestno XCode 39
Figura 11 — Etapa de configuracdo do EarlGrey e KIFno XCode 39
Figura 12 — Informacdes de depuracdo no console do XCode durante a execucdo pelo
XCUITest . . . oo e e e e e 41
Figura 13 — Log de erro exibido pelo EarlGrey ao selecionar valor invalido no Picker . 42
Figura 14 — Picker para selecao de assuntos presente no Caso de Teste4 45
Figura 15 — Bot@o no XCode para ativar o recurso de gravacdao do XCUITest 45

Figura 16 — Dialog do sistema exibido para pedir permissao para acessar fotos do usudrio 47

Figura 17 — Tela do Feedback apos clicar no botdo "Anexar", com menu aberto 48

Figura 18 — Tela da galeria de fotos do sistema, exibida ao clicar em "Escolher uma foto" 48

LISTA DE TABELAS

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6

Caracteristicas dos frameworks investigados 22
Resultados Configuracdo Inicial 35
Resultados Documentagdo L. 35
Resultados Depuragdo o 36
Resultados Critérios Geraiso i 36

Resultados dos critérios téCniCos v v v v v v e e 37

SUMARIO

1.1
1.2
1.3

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.34.1
2.34.2
2.34.3
2.34.4
2.34.5
2.4

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3

INTRODUCAOt ittt e et e e e e e e e 11
Contextualizacao e Motivacao 11
Objetivos 12
Organizacao do Trabalho 12
REVISAO BIBLIOGRAFICA 13
Consideracdes Iniciais 13
Teste de Software 13
Importéancia e Definicao de teste 13
Fases de Teste 14
Técnicas de Teste e 15
Teste em Dispositivos Méveis 16
Testes de Interface do Usuario (Ul) 16
Ambiente de Teste 16
Acessibilidade 17
Ferramentas de teste para plataforma iOS 18
XCode e e 18
XCTeSt . . o o e e e 18
XCUITest o e e e e e e e e e 18
EarlGrey 19
KIF 20
Consideracées Finais 20
PLANEJAMENTO DO TRABALHO 21
Metodologia 21
Planejamento 21
Selecao dos Frameworks 21
Selecao dos Critérios de Avaliacao 22
Selecao do Aplicativo 25
Selecao dos Casos de Testes 26
Preparacdao 31
RESULTADOS EDISCUSSAO 35

Resultados 35

4.1.1
4.1.2
4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3

5
5.1

Critérios Gerais 35

Critérios Técnicos 36
Analise e Discussao 38
Configuracao Inicial 38
Documentacao 40
Depuracao 41
Interacao com elementos. 43
Performance 45
Sincronizacao 45
Processo e 46
Consideracées Finais 49
CONCLUSAOt e e e 51
Contribuicdes 51

REFERENCIAS o e e e e e e e e e e e e e e s s s s 53

11

Capitulo 1

INTRODUCAO

1.1 Contextualizacao e Motivacao

Mais de 3 bilhdes de pessoas no mundo possuem um smartphone hoje em dia, sendo o
sistema operacional 10S responsével por 22% deste niumero, (STATISTA. .., 2019). Todos os
dias milhdes de usudrios dependem de aplicativos mdveis para navegar pela internet, acessar
redes sociais (Facebook, Instagram, Twitter), acessar o e-mail, realizar transa¢des bancéarias
entre outras diversas atividades do dia a dia. Neste sentido, muitas empresas utilizam aplicativos
moveis como principal foco de negdcio (Uber, iFood, Nubank), enquanto outras como forma de

alavancar os negdcios e atender a grande demanda.

Usuarios facilmente perdem interesse ou desinstalam aplicativos que tiveram uma expe-
riéncia ruim em decorréncia de algum problema, por esta razdo o feedback dos usudrios é um
fator fundamental para o sucesso de um aplicativo. Neste contexto, levando em consideragdo o
crescente impacto econdmico associado aos aplicativos moéveis, fica evidente a necessidade de
aplicativos confidveis e consequentemente a realizacdo de testes para garantir a qualidade do

produto, melhorando assim a satisfacdo do usuadrio.

Como a intera¢do com o aplicativo € feita pela interface do usudrio, testes de interface de
usudrio (User Interface - UI) sdo extremamente tteis para garantir uma 6tima experiéncia do
usudrio. No entanto, com o aumento da complexidade dos aplicativos, a processo de testes de Ul

feitos manualmente se torna muito custoso € muitas vezes inviavel.

Neste contexto, a automatizacao dos testes é recomendada quando se deseja aumentar
a eficiéncia do processo de teste ou para aumentar a confiabilidade dos testes, o que pode ser

bastante util em contextos onde prazos de entrega sdo curtos, (INTRODUc¢aO.. ., 2019).

Entretanto, um obstaculo para a automatizacdo de testes de Ul pode ser a falta de conheci-
mento sobre as ferramentas disponiveis, como frameworks, pois existem diversas ferramentas de
automatizacdo, com diferentes especificacdes e propdsitos distintos, para diferentes plataformas.
Dependendo do cendrio, uma ferramenta pode ser mais eficaz que outra, em outros casos a
ferramenta pode ser invidvel para a situacdo. Por estas razdes a escolha de uma ferramenta de

automatizagdo pode se tornar um processo desafiador.

Nenhuma ferramenta de automatizagdo de teste de Ul pode ser considerada superior as

demais, considerando todos aspectos de automacio e teste. Desta forma, diversas ferramentas

12 Capitulo 1. Introdugdo

devem ser comparadas para encontrar caracteristicas distintas entre elas e assim identificar em
quais cendrios essas ferramentas sdo mais eficazes, (MEILIANAA IRWANDHI SEPTIANA,
2018).

Nesse contexto, a experimentacao contribui para verificacdo de novas teorias. Por meio
de experimentos € possivel explorar fatores criticos e elucidar novos fendmenos para que as
teorias possam ser formuladas e entdo corrigidas. A experimentacdo oferece o modo sistematico,
disciplinado, computdvel e controlado para avaliacao da atividade humana. Novos métodos,
técnicas, linguagens e ferramentas ndo devem ser apenas propostos sem experimentacdo e
validacdo, (TRAVASSOS, 2002).

Diante dos aspectos observados, o objetivo principal deste estudo é demonstrar o estado
da arte sobre frameworks de automatizacao de teste Ul para aplicacdes iOS, por meio da
conduc¢do de um estudo experimental que dispde-se a levantar os principais aspectos sobre as
caracterfsticas desses frameworks. Além disso, uma das motivacdes deste trabalho € estimular a
importancia dos testes automatizados de UI. Desta forma este trabalho apresenta a proposta de
avaliar trés frameworks de automatizacdo de testes de Ul: XCUITest, EarlGrey e KIF, que serdo

investigados por meio de um estudo experimental.

1.2 Objetivos

A proposta deste estudo € investigar as vantagens, desvantagens e limitagdes de trés
frameworks de testes de interface quando aplicados para o teste de funcionalidades em aplicativos
10S. Para isso pretende-se desenvolver um estudo experimental com o intuito de obter evidéncias

sobre os frameworks investigados por meio de critérios de avaliacdo definidos neste trabalho.

Além disso, deseja-se demonstrar quais s@o os pontos fortes e fracos dos frameworks para
utilizacdo na automatizacdo dos testes de UI, de forma que seja possivel descobrir caracteristicas
distintas entre os frameworks, contribuindo na tarefa de escolha do framework mais adequado

para o cendrio do desenvolvedor.

1.3 Organizacao do Trabalho

Este trabalho estd estruturado em quatro capitulos, conforme descrito a seguir. No
capitulo 1 € apresentado a contextualizacao, motivacao e objetivos do trabalho. No capitulo 2 é
apresentado uma revisao bibliogrifica sobre os conhecimentos necessarios para o entendimento
do trabalho. No capitulo 3 € descrito o planejamento do estudo comparativo, abordando a
metodologia, selecdo das varidveis envolvidas (frameworks, critérios, casos de testes) € o que
foi feito para preparagdo. No capitulo 4 € apresentado os resultados obtidos em tabelas, e em
seguida € feito uma discussao aprofundada sobre as diferencas dos frameworks investigados. No

capitulo 5 apresentam-se as conclusdes e contribuicoes.

13

Capitulo 2

REVISAO BIBLIOGRAFICA

2.1 Consideracoes Iniciais

Nesta secdo serd explicado a definicdo e importancia do teste de software, também
explicard sobre fases e técnicas de teste. Em seguida serd abordado conceitos de testes dentro do

contexto de aplicativos moveis, como tecnologias e ferramentas utilizadas na plataforma iOS.

2.2 Teste de Software

2.2.1 Importancia e Definicao de teste

Dificilmente alguma pessoa completa o dia sem a participagcao de algum software, seja
para auxiliar em alguma atividade, entretenimento ou até em situagdes de alto risco, conse-
quentemente erros cometidos pelos desenvolvedores podem causar desde inconveniéncia para o
usudrio até graves acidentes. Como tecnicamente € impossivel desenvolver um programa que
seja completamente livre de falhas, todo software sempre precisa ser testado (JORGENSEN,
2013).

Teste de software pode ser definido como um processo ou uma série de atividades com
o0 objetivo de verificar se o software faz aquilo que foi proposto e nao faz algo ndo intencional
(MYERS, 2004). Testes ndo sdo feitos somente para encontrar defeitos, mas também para
assegurar a aceitabilidade e a qualidade de um produto, e o sucesso de qualquer produto de

software depende grandemente de sua qualidade.

Um estudo realizado pelo IBM System Science Institute concluiu que o custo relativo para
consertar defeitos encontrados durante etapas finais do desenvolvimento cresce drasticamente
comparado as etapas inicias. Defeitos encontrados na fase de manuten¢do sao cerca de 15 vezes
mais custosos do que aqueles encontrados durante a implementagao, (DAWSON et al., 2010).
Por este motivo € importante encontrar defeitos o mais rapido possivel, logo é fundamental que
durante o desenvolvimento do software, sejam aplicados técnicas, estratégias e ferramentas que
permitam realizar a atividade de testes de maneira eficaz, de modo a aumentar a qualidade e

diminuir custos do projeto.

14 Capitulo 2. Revisdo Bibliogrdfica

2.2.2 Fases de Teste

A atividade de testes € dividida em diferentes fases. Cada fase possui um objetivo
especifico e sdo focadas em diferentes niveis do desenvolvimento do sistema. O objetivo € dividir
os testes de maneira incremental, iniciando por testes em unidades, em seguida é testado a
integracao entre estas unidades, entdo € testado o sistema por completo e por fim verifica-se a
aceitacdo, (ISTQB, 2018). Assim podemos estabelecer as seguintes fases: teste de unidade, teste
de integracdo, teste de sistema e teste de aceitacdo. Cada uma destas fases possuem abordagens e

responsabilidades diferentes que serdo explicadas a seguir.

Teste de Unidade

Nesta fase de teste o foco sdo componentes (unidades) que sdo testados de forma isolada
do resto do sistema. As unidades podem ser métodos, classes, fun¢des ou qualquer parte pequena
e testavel do programa. Por este motivo o teste de unidade pode ser realizado enquanto o sistema
ainda estd em desenvolvimento e normalmente € realizado pelo préprio desenvolvedor. O objetivo
€ encontrar defeitos nas menores unidades para evitar que erros sejam propagados em niveis

mais altos do teste.

Teste de Integracao

O teste de integragdo tem como foco testar a interacdo entre duas ou mais unidades
trabalhando em conjunto. E possivel que duas unidades, que passaram nos testes unitarios,
apresentem defeitos ao serem testadas agrupadas. Portanto, o teste de integracdo nao foca na
funcionalidade individual dos componentes presentes no teste, a inten¢do € procurar defeitos na
comunicagdo entre os componentes. E fundamental que tenha sido realizado testes de unidade
antes da realizac@o do teste de integracdo, para que nenhum defeito de uma unidade se propague

neste nivel.

Nesta fase procura-se defeitos na comunicacao, manipulag¢do de dados, trocas de mensa-

gens e incompatibilidades de interface entre unidades do sistema.

Assim como no teste de unidade, o teste de integragcdo exige conhecimento sobre a

estrutura interna do cédigo, por isso € normalmente realizado pelos desenvolvedores.

Teste de Sistema

O teste de sistema se concentra em testar um sistema completo e integrado, tendo como
objetivo principal verificar o comportamento geral do software de acordo com os requerimentos
do produto. Ao contrario dos testes de unidade e integracdo, ndo é necessario conhecimento
do cédigo e aspectos internos sobre o desenvolvimento, portanto € normalmente realizado por
testadores independentes com uma abordagem de teste caixa-preta, ou seja, preocupa-se apenas

com as entradas e saidas.

2.2. Teste de Software 15

E importante que, para aumentar a eficicia dos testes, as especificagdes do produto e o

comportamento esperado do programa estejam claros e bem documentados.

Teste de Aceitacao

De maneira 16gica, apds o produto passar pelos testes de sistema, encontra-se muito
préximo ou ja estd na sua fase final, portante nesta fase de teste espera-se que ndo seja encon-
trado uma quantidade significativa de defeitos, pois pode representar um risco ao projeto. A
responsabilidade principal no teste de aceitacdo € verificar se o produto esta pronto para ser

entregue ao cliente (usudrio final).

Diferente do teste de sistema, serd avaliado os requerimentos do negécio, que podem
incluir questdes legais ou regulatdrias, além de verificar se o produto é compativel com as
necessidades do usudrio, ou seja, sua aceitacdo. Por isso o foco dos testes € a experiéncia do
usudrio final. Alguns dos testes mais comuns nesta fase sdo: teste alpha, quando realizado no
ambiente de desenvolvimento, e teste beta, quando realizado no ambiente do cliente, (ISTQB,
2018).

2.2.3 Técnicas de Teste

Durantes as fases de testes, diferentes técnicas de teste podem ser aplicadas. Para a
escolha da técnica deve ser levado em consideragdo o conhecimento do testador, tipo do sistema
e ferramentas disponiveis. As técnicas sdo classificadas de acordo com a origem das informacdes
utilizadas para estabelecer os requisitos de teste e existem dois tipos: funcional e estrutural, (DO
et al., 2000).

Funcional (Caixa-Preta)

Esta técnica de teste € realizada baseado apenas nas entradas e saidas do software, de
acordo com suas especificagdes. Deste modo, ndo € considerado a estrutura interna do programa
e o testador nao necessita saber sobre como foi implementado, ou qual tecnologia foi utilizada.
Os testes sdo executados e os resultados obtidos sdo comparados com resultados esperados. O
teste de interface do usudrio é um exemplo desta técnica, onde as funcionalidades sdo testadas

apenas interagindo com a interface gréfica, sem conhecimento sobre o cddigo.

Estrutural (Caixa-Branca)

O teste estrutural, diferente do teste de caixa-preta, avalia o comportamento interno do
software, portanto o testador possui conhecimento da implementacdo e estrutura interna do
programa testado. As entradas sdo escolhidas analisando o c6digo fonte e elaborando casos
de testes que cubram todos (ou a maioria) dos possiveis fluxos do cédigo, também pode ser

analisado estados internos do programa. Um exemplo desta técnica € o teste unitdrio.

16 Capitulo 2. Revisdo Bibliogrdfica

2.3 Teste em Dispositivos Moéveis

2.3.1 Testes de Interface do Usuario (Ul)

O teste de interface do usudrio em aplicativos méveis tem como objetivo verificar o
correto funcionamento das funcionalidades do aplicativo, na mesma perspectiva de um usuério.
Enquanto testes unitdrios e de integracdo sdo fundamentais para garantir a qualidade de um
aplicativo, o teste de Ul tem como foco a experiéncia final do usudrio. Atualmente, é mais
comum que testes de Ul em aplicativos moéveis seja feito de maneira manual. Normalmente o
testador segue um roteiro, que consiste em instrucdes passo a passo, e interage com o dispositivo
como um usudrio, visualmente verificando os resultados. Em situagdes otimistas, onde o roteiro
e a documentacdo do aplicativo sdo bem definidas, o teste manual pode produzir resultados
satisfatorios. No entanto, o processo pode facilmente se tornar excessivamente tedioso devido a
quantidade de procedimentos a serem testados, além de estar sujeito a falha humana. O tempo
gasto nos testes manuais também € um fator que pode aumentar o custo de desenvolvimento do

aplicativo.

O teste de UI automatizado utiliza ferramentas capazes de reproduzir a interagdo com o
aplicativo, sendo possivel controlar a execugao dos testes e comparar resultados esperados dos
obtidos de maneira automatizada. Desta forma elimina a possibilidade de falhas humanas e au-
menta a eficiéncia do processo de testes, reduzindo o tempo gasto nestas atividades, (BARTLEY,
2008).

2.3.2 Ambiente de Teste

Existem dois tipos de ambiente nos quais os testes de UI podem ser realizados: em um
dispositivo real ou em um simulador. A principal vantagem de utilizar um dispositivo real é obter
uma experiéncia mais proxima possivel da realidade, o que permite analisar como o aplicativo
ird se comportar no mesmo dispositivo em que os usudrios estardo usando. Por outro lado, a
utilizacdo do simulador possui vantagens como escalabilidade, baixo custo e praticidade, pois é
possivel testar diferentes modelos de celular em uma dnica maquina, sem a necessidade de obter

os dispositivos reais.

Atualmente o mercado de dispositivos méveis no mundo possui uma grande variedade
de aparelhos, com diferengas no tamanho de tela, capacidade de processamento e memoria. De
acordo com uma pesquisa feita pela (MIXPANEL, 2018), sobre a fragmentagcao dos usudrios
de iPhone ao redor do mundo, visto na Figura 1, nota-se que existem pelo menos 11 modelos

diferentes de iPhone com um nidmero relevante de usuarios (acima de 3%).

Idealmente, qualquer tipo de teste que possa ter influéncia das particularidades de cada
dispositivo, deve ser testado em todas as variagdes de modelos em que o aplicativo estd disponivel,

que na maioria das vezes € invidvel para o testador. Por este motivo, o uso do simulador € bastante

2.3. Teste em Dispositivos Moveis 17

util para contornar esta situacao.

Figura 1 — Porcentagem da utilizacdo de modelos de iPhone ao redor do mundo.

mixpanel
@ -

Current iPhone usage percentages (as of August 2018)

iPhone 4 iPhone 4S iPhone 5 iPhone 55 iPhone 5C

0.11% 0.34% 0.98% 3.87% 0.47%

iPhone 6 iPhone 6 Plus iPhone 6S iPhone 6S Plus iPhone SE
10.57% 2.63% 13.01% 4.74% 4.62%

iPhone 7 iPhone 7 Plus iPhone 8 iPhone 8 Plus iPhone X

17.34% 12.06% 7.89% 9.37% 12.00%

Fonte: (MIXPANEL, 2018)

2.3.3 Acessibilidade

A Apple fornece ferramentas que possibilitam pessoas com alguma deficiéncia utilizar
seu sistema operacional. Isto inclui pessoas com defici€ncias visuais, motoras e auditivas. Um
recurso interessante é o VoiceOver', o qual o sistema operacional 1& e descreve para o usudrio
todos os elementos presentes na tela, de forma que o usudrio seja capaz de interpretar e interagir

com os aplicativos sem a necessidade de visualizar a tela do dispositivo.

O funcionamento deste recurso depende das propriedades de acessibilidade, que estdao
disponiveis para os desenvolvedores nos elementos da plataforma. Algumas destas propriedades

sdo:
e qaccessibility label: um rétulo sucinto que descreve um elemento, essa propiedade € usada
para ser lida pelo VoiceOver

e accessibility identifier: Utilizado apenas pelo desenvolvedor para identificar unicamente

um elemento, o usudrio nao tem acesso.

' https://www.apple.com/br/accessibility/mac/vision/

18 Capitulo 2. Revisdo Bibliogrdfica

e accessibility hint: Uma breve descri¢do sobre qual acdo o elemento realiza.

e accessibility value: O valor atual do elemento, por exemplo, para um campo de texto, essa

propiedade representa seu conteudo.

Além da importancia em garantir a acessibilidade do aplicativo para pessoas com defici-
€ncia visual, estas propriedades sao utilizadas pelos frameworks de automatizacao de testes para
identificar os elementos que serdo interagidos. Portanto, sdo fundamentais para realizacao de
testes de Ul

As duas propriedades mais utilizadas pelos frameworks para identificar um elemento
sdo: accessibility label e accessibility identifier. A vantagem do accessibility identifier € que o
desenvolvedor pode definir qualquer identificador para esta propriedade, sem se preocupar com
0 usudrio, ja o accessibility label deve sempre conter um identificador relevante para o usudrio,

pois este serd utilizado para guid-lo no VoiceOver.

2.3.4 Ferramentas de teste para plataforma iOS
2.34.1 XCode

Criado pela Apple, é o principal Ambiente de Desenvolvimento Integrado (IDE) para
o desenvolvimento de aplicativos para Mac, iPhone, iPad, Apple Watch e Apple TV. O Xcode
possui um completo conjunto de ferramentas para desenvolvedores programar, criar interfaces
de usuario (Interface Builderz), realizar testes unitarios e de interface, entre diversos outros

recursos.

2.3.4.2 XCTest

XCTest é um framework de testes unitarios também capaz de realizar medigdes de
performance, ja integrado no XCode desde a versao 5, (XCTEST,). Os testes podem verificar
condi¢des, especificadas pelo desenvolvedor, durante a execu¢cdo do cédigo. Caso alguma
condicio presente no teste nio seja satisfeita, o teste ira falhar. E possivel visualizar de forma
detalhada os resultados obtidos pelos testes em forma de relatério, que pode ser visto pelo
XCode.

2.3.4.3 XCUITest

Em 2015, a Apple anunciou o framework de automacao de testes de interface de usudrio,
0 XCUITest, construido em cima do XCTest, fornece uma API focada na realizacado de testes
de UI, (XCUITEST, 2019). Os testes podem ser escritos em Objective-C e Swift e a interacao
com a aplicacdo € feita unicamente por trés classes, sdo elas: XCUIApplication, XCUIElement e

XCUIElementQuery, abaixo € feito um descri¢do sobre cada uma.

2 https://developer.apple.com/xcode/interface-builder/

2.3. Teste em Dispositivos Moveis 19

XCUIApplication: E o proxy para a aplicacio que estd sendo testada. Pode ser conside-
rado o componente raiz na drvore que representa a hierarquia de os todos elementos presentes na
tela. E a partir desta classe que as buscas por elementos sio feitas. O cédigo abaixo exibe como

obter uma instancia desta classe.

let app = XCUIApplication ()

XCUIElementQuery: Representa uma busca para localizar elementos na tela, uma
busca retorna todos os elementos encontrados que correspondem aos parametros fornecidos. O

cddigo abaixo exibe um exemplo de uma busca por todos os botdes do aplicativo.

let buttonsQuery = app.buttons

XCUIElement: Corresponde a um unico elemento de Ul na aplicagdo. Com este ele-
mento € possivel realizar agdes e gestos, como clicar, tocar, deslizar e digitar texto. Além disso
€ possivel acessar algumas propriedades deste elemento, como checar se ele existe. O codigo

abaixo exibe como obter um elemento a partir de uma busca, e entdo realiza uma agao nele.

let button = buttonsQuery["id"]
button.tap ()

2.3.4.4 EarlGrey

EarlGrey € um framework desenvolvido pela Google, teve seu c6digo aberto ao publico
em 2016 e seu diferencial sdo os recursos aprimorados de sincronizagdo, que propde aumentar a
estabilidade dos testes e torna-los altamente repetiveis, (EARLGREY, 2019). Earlgrey suporta
Swift e Objective-C como linguagem para escrita dos testes.

A estrutura bésica para interagir com elementos do aplicativo pode ser vista abaixo:

EarlGrey.selectElement (with: MATCHER)
.perform (ACTION)

Onde MATCHER ¢ utilizado para identificar elementos e pode ser qualquer item do
conjunto da API de sele¢do, chamado GREYMatcher e ACTION representa uma acao da API

chamada GREYAction. Abaixo € possivel ver alguns dos valores disponiveis.

API de Selecao (GREYMatcher):

grey_sufficientlyVisible ()
grey_kindOfClass (UITextField. self)
grey_accessibilityID ("Botao")

20 Capitulo 2. Revisdo Bibliogrdfica

grey_accessibilityLabel ("Botao")

API de Acoes (GREYAction):

grey_tap ()
grey_doubleTap ()

grey_typeText("Texto")

2345 KIF

KIF, do inglés "Keep it Functional", € um popular framework de cddigo aberto desenvol-
vido pela Square em 2011, tem como proposta ser facil de utilizar a0 mesmo tempo que alavanca
as propriedades de acessibilidade fornecida pela plataforma iOS. Embora tenha sido escrito em

Objective-C, também € suportado a linguagem Swift para escrita dos testes, (KIF, 2019).

Para interagir com os elementos, o framework fornece fungdes especificas para cada uma
das acOes disponiveis. Desta forma, € necessario apenas chamar a fun¢do correspondente a acao
que deseja-se realizar, um dos argumentos da funcao serd uma propriedade de acessibilidade,

para identificar o elemento no qual a acdo serd realizada.

kif () .tapView (withAccessibilityID: "id1")
kif () .enterText("teste", intoViewWithAccessibilityLabel: "Campo
de Texto")

O c6digo acima mostra um exemplo para clicar em um elemento que possui a propriedade
accessibility identifier igual a "i1d1", e digitar o texto "teste"dentro de um elemento que possui o

accessibility label igual a "Campo de Texto".

2.4 Consideracoes Finais

Nessa secdo, foram apresentados conceitos e ferramentas que foram utilizados no desen-
volvimento do estudo experimental, os quais sdo fundamentais para o entendimento no decorrer

do trabalho. No préximo capitulo serd apresentado o planejamento do trabalho.

21

Capitulo 3

PLANEJAMENTO DO TRABALHO

3.1 Metodologia

Esta secdo descreve o método aplicado para atingir os objetivos deste estudo comparativo.

Primeiramente serdo definidos os critérios de avaliacdo, os quais serdo utilizados para
avaliar os frameworks investigados. A andlise destes critérios serd feita por meio de pesquisa e
experimentagdo, os frameworks serdo investigados por multiplas fontes e entdo serdo aplicados
na prética, por meio de realizacdo de testes de interface em uma aplicacdo real desenvolvida pela
industria de software. Portanto, com a condugdo deste estudo experimental espera-se identificar

resultados mais significativos sobre os frameworks, avaliados de forma imparcial.

Deste modo, o estudo comparativo serd conduzido da seguinte forma:

1. Estudo completo dos frameworks e suas APIs

2. Configuracdo dos frameworks no projeto do aplicativo alvo

3. Projeto e desenvolvimento dos casos de testes

4. Execucdo dos casos de testes

5. Andlise dos resultados de acordo com os critérios de avaliacao

6. Tabulacdo e discussdo

3.2 Planejamento

Esta se¢do tem como objetivo descrever as informagdes necessdrias para conducao deste
estudo. Sera explicado sobre a escolha dos frameworks, critérios de avaliacdo, objeto de teste

(aplicativo) e os casos de testes.

3.2.1 Selecao dos Frameworks

Para identificagdo dos frameworks que serdo investigados neste estudo foi considerado
apenas os mais utilizados e exclusivos para plataforma 10S. Apds pesquisas em diversas fontes

relacionadas ao desenvolvimento i0OS, conclui-se que os trés frameworks mais populares e bem

22 Capitulo 3. Planejamento do Trabalho

aceitos pela comunidade sdo: XCUITest, EarlGrey e KIF. Frameworks que ndo sdo atualizados

h4 anos ou que sdo pouco utilizados atualmente, como o Frank' foram desconsiderados.

Em relacdo a versdo dos frameworks, foi considerado a versao mais recente e estavel até

0 momento, portanto os frameworks avaliados neste estudo sao:

1. XCUITest (XCode 10.2)
2. EarlGrey 1.15.1

3. KIF (Keep It Functional) 3.7.8

Todos frameworks possuem integracdo com o XCode e suportam Swift e Objective-C
como linguagem para escrita dos testes. Uma diferencga € que testes executados pelo XCUITest
sdo executados em um processo separado do processo da aplicacao, enquanto os frameworks
EarlGrey e KIF executam no mesmo processo da aplica¢do. A tabela 1 apresenta um resumo das

caracteristicas destes frameworks.

Tabela 1 — Caracteristicas dos frameworks investigados

XCUITest EarlGrey KIF
Desenvolvido por | Apple Google Square
Codigo Fechado Aberto Aberto
Linguagem Swift/Objective-C Swift/Objective-C Swift/Objective-C
Processo Processo separado da aplicagdo | Mesmo da aplicacdo | Mesmo da aplicagcdo

3.2.2 Selecao dos Critérios de Avaliacao

A qualidade de um framework de automatizacao pode ser medida por diversos fatores,
que dependem do contexto e do objetivo do desenvolvedor, ainda assim, é possivel definir
alguns requisitos basicos que caracterizam um bom framework, de acordo com (HAO B. LIU;
GOVINDA, 2014), o autor cita os seguintes pontos:

e Suporte para uma grande variedade de propiedades: Um dos objetivos de uma ferramenta
de automatizac¢do de Ul € analisar as propiedades do aplicativo, porém € impraticdvel prever
quais propiedades serdo tteis para todos tipos de andlises. Portanto, o framework deve
fornecer um conjunto de abstracdes suficientes para o usudrio especificar as propiedades

de interesse.

e Flexibilidade na exploragdo de estado: O framework deve permitir que o usudrio customize,
em alto nivel de abstracdo, a exploracdo com os elementos de UI, ou seja, pode-se definir
a ordem e quais acOes serdo realizadas além de checar estados dos elementos. Permitir que
essas decisoes sejam feitas programaticamente torna possivel optimizar o comportamento

de acordo com a anélise a ser feita.

' https://github.com/TestingWithFrank/Frank

3.2. Planejamento 23

e Acesso ao estado do aplicativo: Além de ter acesso as propiedades dos elementos de UI,

muitas andlise sdo necessdrias acessar alguns estados internos do aplicativo.

e Linguagem de script: A legibilidade e manutencao de testes de Ul sdo aspectos importates,
pois o entendimento do cédigo facilita a corretude dos testes e futuras modificagdes, além
de que se a ferramenta necessita aprender uma linguagem de programacgdo nova, pode

dificultar a motivagao para escrita dos testes.

Além dos aspectos mencionados acimas, existem vdrias outras formas de avaliar um
framework de testes de UI, de acordo com (MEILIANAA IRWANDHI SEPTIANA, 2018),

alguns requisitos importantes sao:

e Tempo de execucdo: Espera-se que os testes automatizados sejam mais rapidos que o
manual, e o tempo pode ter um impacto significativo no custo do processo de testes

principalmente quando hd uma grande quantidade de casos de testes.

e Depuragdo: Fornecer recursos de depuracio é importante para detectar problemas e corrigi-
los de maneira rdpida e eficiente, além de aumentar a confiabilidade dos testes ao permitir

que o testador obtenha informagdes relevantes sobre a execugao dos testes.

e Suporte a Gravagdo: O recurso de gravacido permite criar scripts de testes a partir de
interagdes manuais no aplicativo. E um recurso que pode ser muito util para agilizar o

processo de desenvolvimento dos testes.

e Configuragdo Inicial: Um processo complexo e demorado de configuracdo inicial para

comecar utilizar um framework pode prejudicar sua adog¢do.

e Suporte Simulador/Fisico: Suporte a testes realizados tanto em emuladores quanto em

aparelhos reais permite maior flexibilidade para o testador.

e Documentacdo: Boa documentacio contribui para a aprendizagem do framework e acelera
o processo de desenvolvimento dos testes, diminuindo o tempo gasto buscando por dividas

em relacdo a utilizagdo do framework.

Para a elaboragdo dos critérios de avaliacao utilizados neste trabalho, foram levados
em consideracdes todos os requisitos mencionados acima, também foi considerado critérios
utilizados em estudos similares, envolvendo a plataforma Android, como em (MEILIANAA
IRWANDHI SEPTIANA, 2018) e (SINAGA et al., 2018). Alguns critérios foram adaptados de
acordo com as particularidades da plataforma iOS.

Abaixo € apresentado todos os critérios de avaliagdo que serdo aplicados neste estudo
comparativo, que foram divididos entre Critérios Gerais e Critérios Técnicos para melhor

organizacao:

Critérios Gerais:

24

Capitulo 3. Planejamento do Trabalho

CG1 - Configuracao inicial: Este critério avalia a facilidade no processo de configuracao

do framework.

CG2 - Documentacio: Este critério avalia a quantidade e confiabilidade das informagdes
disponiveis sobre o framework, por meios oficiais e ndo oficiais. Também & analisado a

facilidade de aprender sobre sua utilizagc@o através de contetido disponiveis na internet.

CG3 - Depuracao: Este critério avalia os recursos disponiveis do frameworks para facilitar
a depuragdo, como o conteido de mensagens de erros, informacdes relevantes fornecidas

e qualquer outra funcionalidade que possa contribuir neste aspecto.

CG4 - Suporte simulador/aparelho fisico: Este critério avalia se o framework suporta

simuladores e aparelhos fisicos para execu¢do dos testes.

CGS - Suporte a recurso de gravacao: Este critério avalia se o framework tem suporte

para recursos de gravagao.

Critérios Técnicos:

CTO01 - Clicar em botao: Este critério avalia se o framework € capaz de clicar em botdes.

CTO02 - Clicar em imagem: Este critério avalia se o framework é capaz de clicar em

imagens.

CTO03 - Selecionar item no picker’: Este critério avalia se o framework é capaz de

selecionar um item entre os disponiveis no picker.

CTo04 - Digitar em campo de texto: Este critério avalia se o framework é capaz de digitar

em campos de texto.

CTOS - Deslizar a tela (scroll): Este critério avalia se o framework é capaz de deslizar a
tela para exibir elementos ndo visiveis. (Quando o conteddo presente na tela € maior que o

tamanho da tela do celular)

CTO06 - Clicar em aba de navegacao: Este critério avalia se o framework é capaz de

clicar em uma aba de navegacdo, comum em aplicativos 10S.

CTO07 - Verificar se um elemento existe: Este critério avalia se o framework é capaz de

verificar a existéncia de um elemento especifico.

CTO08 - Verificar se um elemento esta visivel: Este critério avalia se o framework é capaz

de verificar a visibilidade de um elemento especifico.

CTO09 - Suporte a atraso programado: Este critério avalia se o framework é capaz de

aguardar por um determinado tempo até que uma condicdo seja satisfeita.

2

Elemento nativo da plataforma iOS que exibe uma lista de itens e permite a selecdo de um tnico item.

3.2. Planejamento 25

CT10 - Sincronizacao com requisicoes de rede: Este critério avalia se o framework
€ capaz de detectar requisi¢cdes de rede e aguardar automaticamente. (Evita interacoes

enquanto o aplicativo estd em um estado indesejado)

CT11 - Sincronizacao com animacoes: Este critério avalia se o framework é capaz de
detectar animacdes nos elementos e aguardar automaticamente. (Evita interagdes enquanto

o aplicativo estd em um estado indesejado)

CT12 - Interagir com dialogs da aplicacio: Este critério avalia se o framework é capaz

de detectar e interagir com os elementos presentes em um dialog dentro da aplicacao.

CT13 - Interagir com dialogs do sistema: Este critério avalia se o framework € capaz
de detectar e interagir com os elementos presentes em um dialog exibido pelo sistema

operacional.

CT14 - Interagir com telas fora da aplicacao: Este critério avalia se o framework ¢é
capaz de interagir com os elementos de uma tela que ndo pertence a aplicacao sendo

testada.

CT1S5 - Finalizar/iniciar aplicacao: Este critério avalia se o framework € capaz de finali-

zar e iniciar a aplicacdo durante a execucao dos casos de testes.

CT16 - Tempo de execucao: Este critério avalia o tempo levado para realizacdo dos casos

de testes.

3.2.3 Selecao do Aplicativo

O aplicativo escolhido para ser utilizado neste trabalho € um aplicativo de seguros

médicos, o qual o autor estd envolvido no processo de desenvolvimento junto com uma equipe,

na empresa Tokenlab®. O aplicativo permite que o cliente de uma empresa de seguros médicos

possa realizar pedidos de reembolsos, consultar um guia médico, solicitar uma autorizagao de

um procedimento médico, entre outras funcionalidades, tudo através do aplicativo.

A escolha do aplicativo aconteceu considerando os seguintes fatores:

e Disponibilidade do cddigo fonte: O acesso ao cddigo foi liberado pela empresa para

realizacdo deste trabalho.

e Complexidade: O aplicativo possui diversas funcionalidades e grande variedade de elemen-

tos, portanto serd suficiente para ser avaliado por todos os critérios de avaliacao definidos.

Um aplicativo muito simples poderia limitar os resultados obtidos.

3

Empresa de desenvolvimento de software com sede em Sdo Carlos

26 Capitulo 3. Planejamento do Trabalho

O aplicativo escolhido esté disponivel na App Store* e possui milhares de acessos didrios,
aumentando a relevancia do estudo experimental. Além disso, durante seu desenvolvimento,
os recursos de acessibilidade foram implementados, portanto, todos os elementos possuem as
propriedades accessibility identifier e accessibility label definidas. Logo, nao foi necessario
realizar alteracdes no codigo do aplicativo para possibilitar a interacdo com os elementos pelos

frameworks.

3.2.4 Selecao dos Casos de Testes

Como dito anteriormente, o aplicativo possui inimeras funcionalidades e mais de 50
telas, testa-lo por completo ndo é o objetivo deste estudo, assim faz-se necessario escolher
funcionalidades especificas para desenvolver os casos de testes. As seguintes funcionalidades

foram escolhidas:

e Cadastro
e Login e Logout

e Enviar Feedback

Levou-se em consideracdo para a escolha das funcionalidades a diversidade de elementos e
interacdes possiveis. Para cada funcionalidade, foram escritos casos de testes para verificar o
comportamento esperado nestes fluxos, mais detalhes sobre cada uma das funcionalidades serd

apresentado abaixo.

Cadastro: Caso o usudrio ndo esteja registrado no sistema, ele pode se cadastrar preen-
chendo um formulério com dados pessoais e definindo uma senha de autenticacao. O usudrio
deve clicar no botdo ’Primeiro Acesso?’ para iniciar o processo de cadastro, que € feito em duas

etapas.

A primeira etapa consiste em fornecer informacdes como nome, CPF e data de nasci-
mento, caso algum desses campos esteja invélido, o aplicativo exibe uma mensagem de erro
indicando qual campo nao foi preenchido corretamente. Para avangar para segunda etapa é
necessario aceitar os termos de uso. Na segunda etapa o usudrio cria uma senha seguindo os

requisitos de seguranca especificados.

As telas do aplicativo referentes ao fluxo de cadastro podem ser vistas nas Figuras 2, 3 e

4 Loja oficial da Apple para distribuicdo de aplicativos da plataforma i0S

3.2. Planejamento

27

Figura 2 — Tela inicial do
aplicativo para
acessar o fluxo de
cadastro

Carrier & 3:18 PM -

SEGUROS
UNIMEDA»'

14 possuo uma conta

Primeiro acesso?

Figura 3 — Tela reference a
primeira etapa do
fluxo de cadastro
do aplicativo

Carrier & 3:18 PM -

< Primeiro acesso

Ola, seja bem vindo!

Informe os dados abaixo para iniciarmos seu cadastro:

Seu CPF

Seu nome

Sua data de nascimento
Seu celular

Seu e-mail

Confirmacao do e-mail

o Declaro estar ciente e concordar com os

Figura 4 — Tela reference a

<

Carrier

segunda etapa do
fluxo de cadastro
do aplicativo

3:20PM -

Primeiro acesso

Henrique Lima,

Crie uma senha de acesso para concluir o seu cadastro:

Sua senha *

Confirme sua senha

caracteres, sendo
um nidmero e ur

Os caracteres aceitos sio: A $ *.[1{}()?-"1 @ #

Fonte: Elaborada pelo autor.

Login e Logout: Dado que um usudrio esteja previamente cadastrado, o aplicativo

permite que este usudrio acesse sua conta apos fornecer seu CPF e senha. Uma vez dentro de sua

conta, o usudrio pode a qualquer momento encerrar sua sessdo navegando para a aba ’MAIS’ e

clicando em Sair. As Figuras 5 e 6 exibem as telas utilizadas para o fluxo de Login e Logout

respectivamente.

28

Capitulo 3. Planejamento do Trabalho

Figura 5 — Tela para realizar
o Login no aplica-
tivo

Carrier & 3:45PM -

SEGUROS
UNIMEDA»'

7] G
Facebook 7 Google
QOu faga

u login

CPF
Senha H

Esqueceu sua senha?

© Contato

Figura 6 — Tela para realizar
o Logout no apli-
cativo

Carrier & 3:44 PM -

Mais
Informages de satide
Calendario nacional de vacinagio =z
Ajuda
Glossdrio >

Termos de Uso e Politica de Privacidade [

Redes Sociais

00000

&

200

Fonte: Elaborada pelo autor.

Enviar Feedback: Permite que um usudrio autenticado envie um feedback para a em-

presa responsavel. Dentro do aplicativo o usudrio navega para aba CONTATO e clica no botao

Compartilhe sua opinido com a gente!, entao ele sera direcionado para a tela onde podera es-

crever uma mensagem e, opcionalmente, anexar documentos. E necessario escolher um assunto

do feedback antes de enviar. A Figura 7 exibe a tela de contato e a Figura 8 a tela para enviar

feedback.

3.2. Planejamento

29

Figura 7 — Tela de contato

Carrier &

Feedback

para acessar a tela Figura 8 — Tela de enviar fe-
de enviar feed- edback no aplica-
back no aplica- tivo
tivo
Carrier % 3:46 PM -
3145 PM = X Feedback
Contato
Selecione um assunto o
Mensagem

[y Voce temelogios, sugestdes ou reclamacdes?
~) Compartilhe com a gente!

Escreva uma mensagem

Central de atendimento

Atendimento Nacional
“ 0800016 6633

g Atendimento ao Deficiente Auditivo Restam 350 caracteres
0800 770 3611

Atendimento 24 hs por meio do site para esclarecer dividas

e reclamagdes

[©) Anexararquivo

www.segurosunimed.com.br

Ouvidoria

Para recorrer 2 Ouvidoria, o cliente deve esgotar as tentativas
de solugio do problema junto aos demais canais de
comunicagdo da empresa € no ter recebido ou ficado
satisfeito com a solug3o apresentada.

As manifestagdes poderdc s via

PERF “Swn™ QUTROS APPS

Fonte: Elaborada pelo autor.

Foram desenvolvidos cinco casos de testes que verificam o funcionamento das funciona-

lidades descritas acima no aplicativo, os quais serdo utilizados no estudo experimental. Cada

caso de teste € detalhado abaixo:

Caso de Teste 1

Funcionalidade:

Cadastro

Objetivo:

Validar um fluxo de cadastro bem sucedido

Etapas:

Clicar no botio “Primeiro acesso?"

Digitar CPF vélido no campo "Seu CPF"

Digitar nome vélido no campo "Seu Nome"

Selecionar data de nascimento védlida no campo "Sua data de nascimento"

Digitar celular valido no campo "Seu celular"

Digitar e-mail vélido no campo "Seu e-mail"

Digitar confirmacao de e-mail vélido no campo "Confirmacao do e-mail"

Aceitar termos de uso

Clicar no botdo "Préximo"

Digitar senha véalida no campo "Sua senha *"

Digitar confirmagdo de senha vélida no campo "Confirme sua senha"

Clicar no botao "Préximo"

et [t |t [et
s e S = I RN = S S

Verificar dialog de confirmacao

30 Capitulo 3. Planejamento do Trabalho
Caso de Teste 2
Funcionalidade: | Cadastro
Verificar se uma mensagem de erro € exibida no campo "Seu CPF"
Objetivo: ao digitar um CPF invdlido e verificar se o aplicativo informa o
usudrio, através de um dialog, caso nao tenha aceitado os termos de uso.
Etapas:

1 Clicar no botao “Primeiro acesso?"
2 Digitar CPF invalido no campo "Seu CPF"
3 Verificar por mensagem de campo invalido
4 Apagar o CPF invélido e digitar um CPF valido
5 Digitar nome véalido no campo "Seu Nome"
6 Selecionar data de nascimento valida no campo "Sua data de nascimento"
7 Digitar celular valido no campo "Seu celular"
8 Digitar e-mail valido no campo "Seu e-mail"
9 Digitar confirmagdo de e-mail vélido no campo "Confirmacao do e-mail"
10 Clicar no botao "Proximo"
11 Verificar dialog informando que termos de uso nao foi aceito
Caso de Teste 3
Funcionalidade: | Login e Logout
Objetivo: Validar fluxo de Login e Logout com sucesso
Etapas:
1 Clicar no botdo "J4 possuo uma conta"
2 Digitar CPF vélido no campo "CPF"
3 Digitar senha valida no campo "Senha"
4 Clicar no botao "Entrar"
5 Verificar se acessou a pdgina inicial
6 Navegar para aba "MAIS"
7 Clicar no botao "Sair"
8 Verificar se encerrou a sessao
Caso de Teste 4
Funcionalidade: | Enviar Feedback
Objetivo: Validar um fluxo de enviar feedback com sucesso
Etapas:
1 Verificar se o usudrio estd autenticado
2 Navegar para aba "CONTATO"
3 Clicar no botao “Compartilhe sua opinido com a gente"
4 Selecionar um item no campo "Assunto"
5 Escrever uma mensagem no campo "Mensagem"
6 Clicar no botdo “Anexar"
7 Aceitar a permissdo de acesso aos arquivos do sistema
8 Clicar no botdo "Escolher uma foto"
9 Selecionar uma foto da galeria
10 Clicar no botao “Enviar”
11 Verificar dialog de sucesso

O 0 9 O L B~ W N~

p—
-}

3.3. Preparagdo 31

Caso de Teste 5

Funcionalidade: | Enviar Feedback

Verificar se o aplicativo exibe mensagem de erro ao tentar enviar feedback

Objetivo:
sem escolher um assunto

Etapas:

Verificar se o usuario esta autenticado

Navegar para aba "CONTATO"

Clicar no botdo “Compartilhe sua opinido com a gente"

Escrever uma mensagem no campo "Mensagem"

Clicar no botdo “Anexar"

QNN B W[N —

Verificar dialog com mensagem informando para selecionar um assunto

3.3 Preparacao

Para melhorar a organizagdo dos casos de testes e evitar cédigo duplicado, foi aplicado
um padrio chamado Robot Pattern °, criado por Jake Wharton. Neste padrio, é criado uma classe
especifica (chamada de Robot) para cada tela do aplicativo, esta classe ira possuir fungdes com
nomes intuitivos que realizam determinadas acdes naquela tela. Com isso, os casos de testes se

tornam legiveis e faceis de entender, pois toda implementacao esta omitida dentro destas classes.

A utilizacdo desta técnica, além das vantagens citadas acima, também possibilitou maior
confiabilidade no estudo comparativo, pois os trés frameworks vao utilizar o mesmo cédigo
para os casos de teste, a diferenca estard na implementacao das fun¢des, onde cada um terd sua

prépria implementacao.

O cddigo dos casos de teste utilizado para os trés frameworks pode ser visto abaixo, onde
cada fungao representa a execucao de um caso de teste diferente, entre os definidos na secao
3.2.4.

Cédigo-fonte 1: Implementagdo dos casos de testes

func testCasel () {
LoginRobot ()

.navigateFirstAccess ()
.typeCPF (with: "43777129852")
.typeName (with: "Henrique Lima")
.typeBirthDate ()
.typeCellphone (with: "333333333")
.typeEmail (with: "teste@email.com")
.typeConfirmationEmail (with: "teste@email.com")

.acceptTerms ()

> https://academy.realm.io/posts/kau-jake-wharton-testing-robots/

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

32 Capitulo 3. Planejamento do Trabalho
.goToNextStep ()
.typePassword (with: "Testel23x")
.typePasswordConfirmation (with: "Testel23x")
.tapFinishButton ()
.assertFinishedRegistration ()
}
func testCase2 () {
LoginRobot ()
.navigateFirstAccess ()
.typeCPF (with: "000000000")
.assertlnvalidMessage ()
.clearCPF ()
.typeCPF (with: "43777129852")
.typeName (with: "Henrique Lima")
.typeBirthDate ()
.typeCellphone (with: "333333333")
.typeEmail (with: "teste@email .com")
.typeConfirmationEmail (with: "teste@email.com")
.goToNextStep ()
.assertlnvalidDialog ()
}
func testCase3 () {
LoginRobot ()
.tapLoginButton ()
.typeCPF (with: "43777129852")
.typePassword (with: "Testel23x")
.assertUserLoggedlIn ()
.navigateToMoreOptions ()
.tapLogoutButton ()
.assertUserLoggedOut ()
}
func testCased () {
LoginRobot ()
.navigateHome ()
.navigateToContact ()
.openFeedback ()

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3.3. Preparagdo 33

.selectFeedbackSubject(with: "Diavida")
.typeFeedbackMessage (with: "Testando 123")
.addFeedbackAttachment ()

.tapSendFeedback ()

.assertFeedbackSent ()

func testCase5 () {
LoginRobot ()

.navigateHome ()
.navigateToContact ()
.openFeedback ()
.typeFeedbackMessage (with: "Testando")
.tapSendFeedback ()
.assertMissingSubjectDialog ()

Em relacdo ao ambiente, todos os testes foram executados utilizando o simulador nativo

do XCode, o modelo simulado foi o iPhone 7 com sistema operancional iOS 12.0. A maquina

onde os testes foram executados é um Mac Mini versdo 2012 °.

6

https://support.apple.com/kb/sp659?locale=en_US

35

Capitulo 4

RESULTADOS E DISCUSSAO

4.1 Resultados

Nesta secdo serdo apresentados os resultados obtidos apds a condugdo do estudo expe-
rimental, por meio de tabelas e graficos. Os resultados foram divididos entre critérios gerais e

técnicos.

4.1.1 Critérios Gerais

Todos os critérios gerais de avaliagdo, definidos na secdo 3.2.2 foram investigados. Para
uma andlise mais objetiva, os critérios: configuracao inicial, documentacdo e depuracdo foram

divididos em critérios mais especificos relacionados ao assunto abordado.

As Tabelas 2, 3 e 4 apresentam os resultados dos critérios relacionados a configuracao
inicial, documentacio e depuragdo, respectivamente. Enquanto a Tabela 5 apresenta os resultados

dos critérios gerais restantes.

Tabela 2 — Resultados Configuragio Inicial

Configuracgdo Inicial
Cédigo | Critério XCUlITest | EarlGrey | KIF
CGO1.1 | Adiciona dependéncias externas ao projeto Nao Sim Sim
CGO1.2 | Necessita configuracio adicional para Swift Nao Nao Sim
CGO1.3 | Necessita execugdo de scripts para instalagdao Nao Sim Nao
Tabela 3 — Resultados Documentacio
Documentagdo
Cédigo | Critério XCUITest | EarlGrey | KIF
CGO02.1 | Documentagdo completa e atualizada Sim Nao Nao
CGO02.2 | Facilidade em encontrar videos informativos e tutoriais Sim Nao Nao
CGO02.3 | Facilitade em encontrar exemplos préticos na internet Sim Nao Nao

36 Capitulo 4. Resultados e Discussdo

Tabela 4 — Resultados Depuracao

Depuracao
Cédigo | Critério XCUITest | EarlGrey | KIF
CGO03.1 | Mensagens de erros detalhadas e informativas Sim Sim Nio
CGO03.2 | Visualizagdo da hierarquia dos elementos na tela Sim Sim Niao
CG3.3 | Captura de tela automdtica nas falhas Sim Sim Nao
CG3.4 | Informagdes em tempo de execucao Sim Nao Nao
Tabela 5 — Resultados Critérios Gerais
Outros

Cédigo | Critério XCUITest | EarlGrey | KIF

CG4 | Suporte simulador/aparelho real Sim Sim Sim

CGS5 | Suporte a recurso de gravacao Sim Nao Nao

4.1.2 Critérios Técnicos

Conforme mencionado anteriormente, cinco casos de testes, com objetivos distintos,
foram empregados para investigacdo dos critérios técnicos, os resultados obtidos sdo apresentados
na Tabela 6.

Os frameworks KIF e EarlGrey ndo foram capazes de executar o Caso de Teste 4, que
envolve anexar documentos na tela de Feedback (Figura 8), devido a falta de compatibilidade

com telas externas ao aplicativo (Critério CT14).

Nenhum outro critério ndo atendido impossibilitou a execu¢dao dos casos de testes,
portanto todos os outros casos de testes foram aplicados com sucesso pelos trés frameworks

investigados.

4.1. Resultados

37

Tabela 6 — Resultados dos critérios técnicos

Cédigo | Critério XCUITest | EarlGrey | KIF
CTO01 | Clicar em botdo Sim Sim Sim
CTO02 | Clicar em imagem Sim Sim Sim
CTO3 | Selecionar item no picker Sim Sim Sim
CT04 | Digitar em campo de texto Sim Sim Sim
CTO5 | Deslizar a tela (scroll) Sim Sim Sim
CTO6 | Clicar em aba de navegacado Sim Sim Sim
CTO07 | Verificar se um elemento existe Sim Sim Sim
CTO08 | Verificar se um elemento esté visivel Nao Sim Nao
CTO09 | Suporte a atraso programado Sim Sim Sim
CT10 | Sincronizagdo com requisi¢des de rede Nao Sim Nao
CTI11 | Sincronizagdo com animagdes Nao Sim Nao
CT12 | Interagir com dialogs da aplicacdo Sim Sim Sim
CT13 | Interagir com dialogs do sistema Sim Nao Sim*
CT14 | Interagir com telas fora da aplicacdo Sim Nao Nao
CT15 | Finalizar/iniciar aplicacdo nos testes Sim Nao Nao

Em relacdo ao critério CT13, o framework KIF foi capaz apenas de confirmar o dialog

mas nao conseguiu realizar outros tipos de interagdes.

A medicdo do tempo de execugdo foi feita pelo comando measure do XCTest, que
executa o codigo dez vezes seguidas e calcula uma média dos resultados, desta forma os tempos

de execucdo encontrados sao mais confidveis e significativos. Os resultados podem ser vistos na

Figura 9.

38 Capitulo 4. Resultados e Discussdo

Tempo de Execucdo
(em segundos)

34
32
30
28
26
24
22
20
18
16
14
12
10

Tempo (s)

[Y S R < = 1]

1 2 3 4 5
Caso de Teste

B XCUITest EarlGrey W KIF

Figura 9 — Tempo de execucdo (em segundos) dos casos de testes para cada framework

Como KIF e EarlGrey ndao completaram o Caso de Teste 4, o tempo foi representado

como Z€ro.

4.2 Anadlise e Discussao

Nesta secdo os frameworks serdo abordados com maior nivel de detalhamento em relacio
aos resultados obtidos. A discussdo foi dividida em tépicos, que em sua totalidade, abordam

todas as particularidades encontradas sobre os frameworks investigados.

4.2.1 Configuracao Inicial

Nenhum dos frameworks investigados possuem um processo complexo de configuracdo
inicial. No entanto, o XCUITest leva vantagem neste aspecto, pois por padrio, jd estd totalmente
integrado ao XCode, portanto para configura-lo foi necessario somente adicionar um novo 7Target
de testes no projeto, clicando em ”Add Target”, dentro do XCode, e selecionando ”iOS Ul Testing

Bundle” como mostra Figura 10.

4.2. Andlise e Discussdo 39

Figura 10 — Etapa de configuracdo do XCUITest no XCode

Choose a template for your new target:
i0s watchOS twOSs mac0S Cross-platferm

Application Extension

™

Unwanted
Communication

Test

G

i0S Ul Testing i0S Unit Testing
Bundle Bundle

Application

Decument Master-Detail App

Single View App Augmented

Cancel Next

Fonte: Elaborada pelo autor.

Para configuracdo do EarlGrey e do KIF foi necessario adicionar dependéncias externas
ao projeto. Este processo foi realizado com o auxilio do gerenciador de dependéncias chamado
Carthage Il Em seguida, semelhante ao XCUITest, foi criado um 7arget de testes para cada
framework, no entanto foi selecionado a op¢ao "iOS Unit Testing Bundle" como mostra a Figura
11.

Figura 11 — Etapa de configuracio do EarlGrey e KIF no XCode

Choose a template for your new target:
08 watchOS tvOS macO5 Cross-platform

Application Extension

Unwanted
Communication

Test
o
BH

i0S Ul Testing i0S Unit Testing
Bundle Bundle

Application

1 F

Single View App Augmented

Document Master-Detail App

Cancel Next

Fonte: Elaborada pelo autor.

' https://github.com/Carthage/Carthage

40 Capitulo 4. Resultados e Discussdo

Observa-se que EarlGrey e KIF sao executados por meio de um Target de testes unita-
rios ao invés de U, por este motivo os testes executam no mesmo processo da aplicacdo, as

consequéncias desta diferenca em relagao ao XCUITest serao discutidos na Secao 4.2.7.

Por fim, para o EarlGrey ainda foi necessdrio executar mais dois comandos no terminal

que finalizam sua instalagdo:

gem install earlgrey \\

earlgrey install —t EarlGreyTarget (nome do Target)

O framework KIF ndo necessitou de etapas adicionais na instalag¢@o, por outro lado, como
a linguagem escolhida para escrita dos testes foi Swift e ndo Objective-C, foi preciso adicionar o

Codigo-fonte 2 dentro do arquivo de testes:

Cadigo-fonte 2: C6digo para suporte a linguagem Swift no KIF

1 extension XCTestCase {
2 func KIF(file: String = #file, _ line: Int = #line) ->
KIFUITestActor {

3 return KIFUITestActor (inFile: file,

4 atLine: 1line,

5 delegate: self)

6 }

7}

8 extension KIFTestActor {

9 func KIF(file: String = #file, _ line: Int = #line) ->
KIFUITestActor {

10 return KIFUITestActor (inFile: file,

11 atLine: line,

12 delegate: self)

13 }

14 }

O Codigo-fonte 2 permite que as fungdes do framework sejam acessadas, utilizando a linguagem

Swift, por meio da func¢do KIF(), por exemplo:

KIF() .tapView(withAccessibilityLabel: "Entrar")

4.2.2 Documentacao

Entre os 3 frameworks investigados, XCUITest destaca-se pela qualidade e quantidade

de documentagio. Por ser desenvolvido pela Apple, contém uma documentagio oficial® além de

2 https://developer.apple.com/documentation/xctest/user_interface_tests

4.2. Andlise e Discussdo 41

possuir videos informativos criados na WWDC 3.

Em relagdo aos frameworks KIF e EarlGrey, ambos de c6digo aberto, desenvolvidos por
colaboradores e nao possuem uma empresa especifica atrelada ao desenvolvimento, deste modo,
as informagdes sobre ambos sdo encontradas em seus respectivos repositorios de versionamento.
Notou-se que tanto para o KIF quanto EarlGrey a documentacio presente no GitHub” ndo era

atualizada a mais de 2 anos e o contetddo era focado na linguagem Objective-C.

Além da documentacao oficial, notou-se que XCUITest também possui maior quantidade
de contetido informativo espalhado na internet, como Youtube®, postagens em blogs e fortins de
discussdo, que sdo recursos bastante tteis para a aprendizagem de cada framework. Exemplos
praticos da utilizacdo do framework para o KIF e EarlGrey eram breves e nao atendiam as
necessidades do autor, por outro lado, foi encontrado muito contetdo prético relacionado ao

XCUITest, apesar de ndo haver garantia de confiabilidade dos recursos.

4.2.3 Depuracao

XCUITest foi o dnico framework capaz de fornecer um relatério de execugdao em tempo
real. Durante a execugdo dos casos de testes, foi possivel visualizar no console do XCode qual
acdo estava sendo executada naquele instante (informando o tempo em segundos). A Figura 12

mostra um exemplo deste relatério, enquanto EarlGrey e KIF ndo possuem recurso semelhante.

Figura 12 — Informacdes de depurac¢do no console do XCode durante a execucdo pelo XCUITest

26.89s Checking existence of “"INICIO" Button™

27.31s Waiting 5.8s for "CONTATO" Button to exist

28.35s Checking “Expect predicate “exists == 1 for object "CONTATO" Button™

28.36s Checking existence of "“"CONTATO" Button’

28.408s Tap "CONTATO" Button

28.40s Wait for br.com.tokenlab.reembolsodigital to idle

28.50s Find the "CONTATO" Button

28.54s Check for interrupting elements affecting "CONTATO" Button

28.55s Synthesize event

28.76s Wait for br.com.tokenlab.reembolsodigital to idle

28.91s "Vocé tem elogios, sugesties ou reclamagdes? Compartilhe com a gente!" Button

28.91s Wait for br.com.tokenlab.reembolsodigital to idle

29.08s Find the "Vocé tem elogios, sugestdes ou reclamagdes? Compartilhe com a gente!" Button

29.85s Check for interrupting elements affecting "Vocé tem elogios, sugestdes ou
reclamagdes? Compartilhe com a gente!" Button

29.06s Synthesize event

29.18s Wait for br.com.tokenlab.reembolsodigital to idle

29.82s Double tap "ImgAssunto" Button

29.82s Wait for br.com.tokenlab.reembolsodigital to idle

29.99s Find the "ImgAssunto” Button

30.12s Check for interrupting elements affecting "ImgAssunto" Button

30.13s Synthesize event

t
t
t
t
t
t
t
t
t
t
t
t
t
t

Lo B I . . O

Fonte: Elaborada pelo autor.

Em relacdo as mensagens de erro exibidas ao ocorrer uma falha no teste, XCUITest e
EarlGrey se mostraram superiores ao KIF, fornecendo informac¢des detalhadas sobre possiveis

problemas, enquanto o KIF apenas indica brevemente a agao que nao foi possivel realizar.

https://developer.apple.com/videos/developer-tools/testing
https://github.com

> https://www.youtube.com

42 Capitulo 4. Resultados e Discussdo

No Caso de Teste 4, ao tentar selecionar um item nao disponivel no picker para selecdo
de um assunto do feedback, o framework KIF exibiu a breve mensagem: "Failed to select from

Picker.", enquanto o framework XCUITest exibiu a seguinte mensagem:

Assertion Failure: <unknown>:0: Requested adjust to value ’Teste’
which is not one of the possible values Elogio, Reportar erro,
Sugestdo de melhoria, Davida, Outros assuntos for the picker wheel

"Selecione um assunto"

O erro é bem descrito e os valores possiveis sao indicados, o framework EarlGrey exibiu a

mensagem da Figura 13, que mostra varias informagdes sobre o erro.
Figura 13 — Log de erro exibido pelo EarlGrey ao selecionar valor invédlido no Picker

Exception: ActionFailedException

Exception Name: ActionFailedException
Exception Reason: An action failed. Please refer to the error trace below.
Exception with Action: {
"Action Name": "Set picker column 0 to value "Teste™,
"Element Matcher": "kindOfClass('UIPickerView')"
}

Exception Details: Error Trace: [
{
"Description”: "UlPickerView does not contain desired value!”,
“Error Domain": “com.google.earigrey.ElementinteractionErrorDomain®”,
“Error Code": "2",
"File Mame": "GREYPickerAction.m",
"Function Name": "-[GREYPickerAction perform:error:]”,
"Line": "120",
"TestCase Class": "EarlGreyTarget.EarlGreyTests",
"TestCase Method": "testFeedback"

Fonte: Elaborada pelo autor.

Ainda quando a mensagem de erro ndo € suficiente, um recurso util é visualizar a
hierarquia de elementos na tela, encontrada pelo framework, para verificar se o elemento de-
sejado estd presente. O framework KIF ndo fornece este recurso, EarlGrey exibe a hierarquia
automaticamente quando hd uma falha e com o XCUITest, é possivel visualizd-la através do

comando
XCUIApplication() .debugDescription

Outro aspecto importante para depuracao € a capacidade de capturar a tela no momento
em que algum teste falha (Critério CG3.3), o que torna mais facil encontrar possiveis defeitos na
aplicacdo. O experimento mostrou que XCUITest e EarlGrey possuem este recurso por padrao, e
foi possivel analisar as imagens capturadas pelo proprio XCode, por outro lado, KIF nao realizou

capturas de tela.

4.2. Andlise e Discussdo 43

Foi identificado, por pesquisas na internet, a possibilidade de realizar capturas de telas,
porém ndo foi considerado neste experimento pois exige configuragdes adicionais que nao
pertencem ao framework, desenvolvidas por outras fontes. Assim optou-se por funcionalidades

nativas de modo a garantir uma andlise mais justa dos frameworks.

4.2.4 Interacao com elementos

Os resultados da Tabela 6 mostram que todos os frameworks conseguem interagir com
os elementos mais comuns presentes em aplicacdes 10S (Critérios CTO1, CT02, CT03, CT04,
CTO05, CT06), o diferencial entre eles é a forma em que estes elementos sdo encontrados na tela

e o modo que a interacdo € feita. Abaixo serdo discutidos estes dois aspectos.

Em relacdo ao modo de encontrar elementos, com o framework XCUITest é preciso fazer
uma busca explicita pelo tipo do elemento desejado. O cédigo abaixo mostra exemplos de como
¢ feito as interacdes pelo XCUITest:

// XCUlITest

app.buttons["Login"].tap() // botdo

app.staticTexts["Texto"].tap() // textos estdticos

app . checkBoxes["Check"].tap () // checkbox

app.images["Img"].tap () // imagem

app.textFields ["CPF"]. typeText("00319984028") // campo de texto

app.secureTextFields["Senha"].typeText("Testel23x") // campo de
senha

app . pickerWheels[" Assunto"]. adjust (toPickerWheelValue: "Elogio"
) // picker

Enquanto nos frameworks KIF e EarlGrey, as mesmas interacdes podem ser feitas sem
especificar o tipo do elemento, somente € preciso especificar o tipo do identificador, como pode

ser visto abaixo:

// EarlGrey:
EarlGrey.selectElement (with: grey_accessibilityLabel ("Label")).

perform (grey_tap ())
EarlGrey.selectElement(with: grey_accessibilityID ("ID")).

perform (grey_tap ())

//KIF :
KIF () .tapView (withAccessibilityLabel: "Label")

44 Capitulo 4. Resultados e Discussdo

KIF () .tapView(withAccessibilityldentifier: "ID")

Opcionalmente, € possivel personalizar a busca por elementos no EarlGrey por tipos de

elementos especificos de acordo com sua classe, por exemplo: grey_kindOfClass(UIButton.self).

Notou-se que com a abordagem do XCUITest € necessdrio um conhecimento maior sobre
a implementacdo do aplicativo, pois em alguns casos o tipo do elemento nio € explicito e pode
ser confundido, como imagens que parecem botdes. No Caso de Teste 1, por exemplo, todos os
campos de textos foram utilizados o comando app.textFields , porém ao tentar utiliza-lo para
o campo de senha ocorreu uma falha, entdo foi preciso alterar para app.secureTextFields. Este
problema ndo ocorre nos frameworks KIF e EarlGrey, em que o elemento € encontrado apenas

pelo identificador.

Em relacdo ao modo que as interagdes sao feitas, observa-se que EarlGrey realiza as
acOes mais proximas de um usudrio real. Ao digitar um texto, por exemplo, EarlGrey utiliza o
teclado disponivel do aparelho, interagindo com todas as teclas necessdrias para reproduzir o
texto completo, enquanto seus concorrentes adicionam o texto no elemento sem interagir com o
teclado presente na tela. Desta maneira, cendrios em que apenas o teclado numérico € exibido na
tela, ao tentar digitar um texto contendo uma letra, o EarlGrey ira falhar, enquanto XCUITest e
KIF nao, criando uma situagdo inconsistente, pois o usudrio jamais seria capaz de digitar uma

letra.

Outro ponto que favorece o realismo nas interacoes do EarlGrey é a checagem por
visibilidade (critério CT08), o tinico framework que possui este recurso. Para determinar se um
elemento € interagivel, EarlGrey faz uma checagem de visibilidade, internamente, analisando os
pixels ndo obstruidos por outro elemento, desta maneira evita-se a interacdo com um elemento
em que o usudrio nao conseguiria visualizar, tornando o teste mais robusto. Também € possivel

realizar assertivas em relacdo a visibilidade de determinados elementos.

Além disso, no Caso de Teste 4, nota-se que ao interagir com o picker, visto na Figura 14,
para selecionar um item, o EarlGrey desliza o componente até chegar no item desejado, similar a

uma intera¢do humana, enquanto KIF e XCUITest modificam o valor instantaneamente.

Em relacdo ao critério CGS, apenas o XCUITest possui recurso de gravacao. Ao clicar
no botao indicado pela Figura 15, o aplicativo € compilado e executado, entdo pode-se realizar
o teste desejado interagindo com a aplicacdo simulando a interagdo de um usudrio real, apds
parar a gravacdo, é gerado automaticamente o c6digo que reproduz todas as interagdes feitas
manualmente. Este recurso se mostrou bastante ttil para iniciar o desenvolvimento dos testes,
principalmente pela agilidade e facilidade. Por outro lado, dependendo da complexidade da tela,
o recurso nem sempre reproduz com exatidao as acoes desejadas, e também notou-se que o
codigo gerado normalmente necessita de alteracdes para melhor se adequar aos objetivos do
teste ou para melhorar a legibilidade do cédigo. Portanto, apesar de ser um recurso facilitador, a

medida que o desenvolvedor ganha mais experi€éncia no desenvolvimento dos testes, espera-se

4.2. Andlise e Discussdo 45

Figura 14 — Picker para selecio de assuntos presente no Caso de Teste 4

Done

Sugestdo de melhoria

Fonte: Elaborada pelo autor.

que este recurso se torne menos relevante, pois escrever o cédigo manualmente mostrou-se mais

eficiente.

Figura 15 — Botao no XCode para ativar o recurso de gravacdo do XCUITest

Ele|® I | <7

Fonte: Elaborada pelo autor.

4.2.5 Performance

Pela Figura 9, nota-se que o framework KIF possui a melhor performance entre os trés,
pois obteve o menor tempo de execucdo em todos os casos de testes. Por outro lado, EarlGrey foi
significativamente mais lento, em alguns casos seu tempo de execugdo levou mais do que o dobro
do tempo levado pelo KIF. Uma provavel explicacao para esse resultado € a abordagem mais
realista nas interacOes com os elementos, presente no EarlGrey, como foi explicado na se¢ao
anterior. XCUITest obteve tempos de execugdo proximos ao KIF, levando poucos segundos a

mais.

4.2.6 Sincronizacao

Durante o desenvolvimento dos testes € necessdrio levar em consideracdo que o aplicativo
pode estar ocupado em determinados momentos, como quando estd aguardando a resposta de
uma requisicdo de rede, carregando alguma tela, ou completando alguma animacgdo. Nestes

instantes, o framework pode ndo conseguir encontrar ou interagir com o elemento desejado.

46 Capitulo 4. Resultados e Discussdo

Por padrao, XCUITest tenta duas vezes, em um curto intervalo de tempo, encontrar um
elemento, e caso ndo encontre nestas tentativas o teste ird falhar, fato que foi constatado através

das mensagens exibidas pelo framework em tempo de execugao:

-
I

18.95s Find the "Anexar" Button (retry 1)
19.99s Find the "Anexar" Button (retry 2)

,_,
Il

O framework KIF, por sua vez, tenta encontrar o elemento continuamente durante um tempo pré

definido (10 segundos), que pode ser alterado pelas configuragdes do framework.

Em casos que o comportamento padrdo nao € suficiente, XCUITest e KIF possuem
funcdes para aguardar um determinado tempo antes de tentar interagir com o elemento (critério

CT09), abaixo estd o codigo utilizado para ambos.

// XCUITest
element. waitForExistence (timeout: 10)
// KIF
KIF () . waitForView (withAccessibilityLabel: "elemento")

O EarlGrey se destacou neste quesito por possuir recursos de sincronizagdo (critério
CT10 e CT11). De acordo com (EARLGREY.. .,) "EarlGrey automaticamente aguarda que
o aplicativo fique ocioso, rastreando a fila principal de despacho, a fila de operagées, de rede
e animacoes, além de vdrios outros sinais, e realiza interacdes somente quando o aplicativo
estd ocioso". Por este motivo EarlGrey ndo necessita de maneiras explicitas para aguardar um
elemento, uma vez que o recurso de sincronizagdo faz isso automaticamente. A sincronizagdo au-
tomatica foi muito util durante os desenvolvimento dos testes pois nao foi necessario acrescentar

codigos adicionais para tratar estas situagdes.

Um problema com tempos de espera fixados pelo desenvolvedor, como no caso do
XCUTITest e KIF, € a imprevisibilidade do teste, uma vez que € impossivel saber com exatidao
quantos segundos uma requisicao de rede pode levar, por exemplo. Tempos longos demais podem
reduzir a performance do teste, enquanto tempos curtos podem gerar resultados incorretos. Por
este motivo a dependéncia de valores fixos € um fator que impacta a confiabilidade dos testes.

Neste sentido, o EarlGrey teve vantagem em relagdo aos outros.

4.2.7 Processo

Como dito anteriormente, tanto os testes no EarlGrey quanto no KIF sdo executados no
mesmo processo da aplicacdo, enquanto no XCUITest € executado em um processo separado,
com os resultados obtidos pelos criterios CT13, CT14, CT15 foi possivel avaliar os impactos

positivos e negativos deste quesito.

4.2. Andlise e Discussdo 47

Como vantagem de possuir um processo separado, XCUITest conseguiu cumprir todos

critérios citados acima.

Foi possivel inicializar e finalizar a aplicac@o através dos métodos launch() e terminate()

da classe XCUIApplication, pelo cddigo:

let app = XCUIApplication ()
app . launch ()

app.terminate ()

EarlGrey e KIF nao conseguem fazer o mesmo durante os testes, portanto ao executar
um conjunto de casos de testes, o proximo teste serd executado a partir do estado deixado pelo

teste anterior, sem a possibilidade de reiniciar o aplicativo entre os casos de testes.

No Caso de Teste 4, para anexar documentos no aplicativo, o sistema pergunta para
0 usudrio por permissdes de acesso aos arquivos internos do aparelho, através de um dialog,
mostrado na Figura 16. Como este dialog é gerenciado pelo sistema operacional e ndo pela
aplicacdo, Earlgrey ndo foi capaz de confirmar a permissdo, o KIF por sua vez, possui uma

fun¢do que contorna esta situacdo e e confirma a permissao no dialog, através do c6digo:

KIF () .acknowledgeSystemAlert ()

Figura 16 — Dialog do sistema exibido para pedir permissao para acessar fotos do usudrio

“"Seguros Unimed" Would
Like to Access Your Photos

P Mecessdrio acesso a sua galeria para
anexar documentos.

Don't Allow OK

Fonte: Elaborada pelo autor.

Este recurso do framework KIF foi satisfatdrio para realizar esta etapa do caso de teste, no
entanto ndo € possivel detectar o texto e os botdes presentes no dialog, ele apenas serd confirmado
clicando no botdo "OK", que € o suficiente para maioria dos casos, porém em situagdes em que o

teste necessite verificar textos ou negar o acesso, nao serd possivel pelo framework KIF.

Portanto somente com XCUITest foi possivel interagir com o dialog do sistema por
completo, através do codigo abaixo, é possivel realizar as interagdes sem limitacdes, como em

qualquer outro elemento:

48 Capitulo 4. Resultados e Discussdo

addUlInterruptionMonitor (withDescription: "System Dialog") {
alert — Bool in
let okButton = alert.buttons["OK"]
if okButton.exists {
okButton. tap ()

Ainda no Caso de Teste 4, ao clicar no botdao "Anexar"na tela de Feedback (Figura 8), é
exibido um menu de opcdes para escolher a origem dos arquivos, como mostra a Figura 17. Ao
selecionar "Escolher uma foto"entio € aberto uma tela com a galeria de fotos do sistema como

da Figura 18.

Tanto o menu quanto a galeria de fotos do sistema sdo janelas externas ao aplicativo,
devido a recursos de segurancga presentes no i0S. Como sistema operacional € responsavel por
exibir estes elementos, o EarlGrey e KIF ndo foram capaz de realizar nenhum tipo de a¢do nestas

janelas, impossibilitando a conclusdo do Caso de Teste 4. XCUITest interagiu normalmente com

ambas janelas.

Figura 17 — Tela do Feed- Figura 18 — Tela da galeria
back ap06s clicar de fotos do sis-
no botio "Ane- tema, exibida ao
xar", com menu clicar em "Esco-
aberto lher uma foto"

Carrier & 9:50 PM L

£ Photos Moments Cancel

bingeyjarsveit, Northeast Iceland
Aug 8, 2012 - Godafossvegur

’

Djupavogshreppur
Aug 8, 2012 - East celand

-

Rangarping eystra
Aug 8, 2012 - South Iceland

E

Tirar uma foto

Escolher uma foto San Francisco, CA

Browse

Cancel

Fonte: Elaborada pelo autor.

Portanto foi visto que quando os testes sdo executados no mesmo processo da aplicagdo,

dialogs e janelas externas sdo um fator limitante. Por outro lado, isto permite que EarlGrey

4.3. Consideragoes Finais 49

e o KIF acessem o estado interno do aplicativo, como variaveis, classes e fucdes, durante a
execucdo dos testes. Este tipo de acesso permite que o EarlGrey e KIF realizem testes do tipo
Caixa-Branca. Como o objetivo deste estudo € a realizacao de testes de interface do usudrio

(Caixa-Preta), as possibilidades e possiveis vantagens desta caracteristica nao foram exploradas.

4.3 Consideracoes Finais

O experimento realizado neste estudo permitiu extrair informagdes sobre todos os cri-
térios de avaliacdo propostos, além disso, também foi identificado aspectos relevantes sobre
os frameworks que nao faziam parte dos critérios. Com base nos conhecimentos adquiridos e

considerando a opinido do autor, € possivel fazer as seguintes afirmagdes sobre os frameworks:

e XCUITest possui o mais simples e rapido processo de configuragdo inicial.

e XCUITest possui a documentacao mais completa e maior facilidade em encontrar conteido

informativo atualizado na internet.
e KIF € o framework com menos recursos para depuracao.

e EarlGrey realiza as interagdes com elementos de maneira mais semelhante a um usudrio

real.
e XCUITest € o unico framework que possui recurso de gravacdo para escrita dos testes.
e KIF € o framework mais rapido em termos de tempo de execucao.
e EarlGrey possui maior flexibilidade para realizar buscas por elementos.

e KIF possui métodos simples e objetivos, mas poucos flexiveis para interagir com elemen-

tos.

e Todas interacdes com elementos no KIF dependem das propriedades de acessibilidade
(accessibility identifier e acessibility label) dos elementos, enquanto XCUITest e EarlGrey
possuem alternativas de busca por elementos que nao necessariamente dependem destas

propriedades (como buscas pelo tipo do elemento).
e KIF e EarlGrey ndo sdo capazes de interagir com telas externas ao aplicativo

e EarlGrey garante maior confiabilidade nos testes quando a aplicacdo faz requisi¢oes de
rede e possui animagdes, pois possui recursos de sincronizagdo que evitam a necessidade

de definir tempos de espera nos testes.

e EarlGrey € o unico framework capaz de checar pela visibilidade de um elemento.

51

Capitulo 5

CONCLUSAO

5.1 Contribuicoes

Até onde se sabe, este € o primeiro estudo comparativo que inclui os 3 frameworks
presentes neste trabalho: XCUITest, EarlGrey e KIF. A maioria dos estudos similares, pelo
conhecimento do autor, sdo focados na plataforma Android ou ferramentas multiplataforma
como o Appium'. Portanto, o foco no desenvolvimento iOS deste trabalho permitiu avaliar
os frameworks de forma mais especifica. Este trabalho também apresenta detalhes técnicos
que podem auxiliar outros desenvolvedores que pretendem utilizar algum dos frameworks

investigados.

A condugdo do estudo experimental, tanto em relag@o a escolha dos critérios de avaliagdo,
como também a escolha do aplicativo e dos casos de testes, se mostrou bem sucedido no seu
propdsito de encontrar caracteristicas distintas entre os frameworks, uma vez que foi possivel
apontar vantagens e desvantagens de cada um. Assim este trabalho pode servir como um guia

para a escolha do framework ideal de acordo com as necessidades do desenvolvedor.

Uma contribui¢do importante deste trabalho € que, pela forma que os casos de teste
foram estruturados, mostrou-se que € totalmente vidvel utilizar mais de um framework ao mesmo
tempo, no mesmo projeto. Visto que os 3 frameworks foram integrados no projeto do aplicativo,
para realizacdo do experimento, de maneira satisfatéria. Desta forma o testador pode aproveitar
os beneficios de cada framework em partes diferentes do aplicativo. Por exemplo, algumas

funcionalidades podem ser testadas com um framework, e outras funcionalidades com outro.

Como contribui¢do pessoal, este trabalho possibilitou ao autor ampliar os conhecimentos
sobre o tépico de testes de software, e testes automatizados de interface, principalemente para
aplicacdes 10S. Além disso foi possivel aprender, de maneira prética, sobre trés ferramentas de
automatizagdo de testes de UI. Os conhecimentos adquiridos neste trabalho serdo utilizados na

carreira profissional do autor.

Outra contribui¢do importante € que este trabalho serviu como uma iniciativa para o
inicio do processo de automatizagdo dos testes de UI na empresa Tokenlab. Desta forma, sera
dado continuidade aos testes desenvolvidos neste trabalho, para incluir novas funcionalidades do

aplicativo. Espera-se que com a automatizacdo dos testes de UI, a responsabilidade pelos testes

' http://appium.io/

52 Capitulo 5. Conclusdo

seja dividida entre a equipe de qualidade (QA) e os desenvolvedores, diminuindo a sobrecarga

do QA, que necessita testar duas plataformas.

53

REFERENCIAS

BARTLEY, M. Improved time to market through au tomated software testing. 2008. Citado na
pagina 16.

DAWSON, M.; BURRELL, D.; RAHIM, E.; BREWSTER, S. Integrating software assurance
into the software development life cycle (sdic). Journal of Information Systems Technology
and Planning, v. 3, p. 49-53, 01 2010. Citado na pagina 13.

DO, S.; SOUZA, S.; MALDONADO, J.; PINTO, S.; FABBRI, F.; AURI, M.; VINCENZI, A.;
BARBOSA, E.; DELAMARO, M.; JINO, M. INTRODUCAO AO TESTE DE SOFTWARE.
[S.L: s.n.], 2000. Citado na péagina 15.

EARLGREY. 2019. Disponivel em: <https://github.com/google/EarlGrey>. Acesso em:
28/10/2019. Citado na pagina 19.

EARLGREY Syncronization. Disponivel em: <https://github.com/google/EarlGrey/blob/master/
docs/api.md#synchronization-apis>. Acesso em: 28/10/2019. Citado na pagina 46.

HAO B. LIU, S. N. W. G. J. H. S.; GOVINDA, R. Puma: Programmable ui-automation for
large-scale dynamic analysis of mobile apps. 2014. Citado na péagina 22.

INTRODU¢3aO aos testes automatizados. 2019. Disponivel em: <http://talkingabouttesting.
coursify.me/>. Acesso em: 28/10/2019. Citado na pagina 11.

ISTQB. Certified tester, foundation level syllabus. 01 2018. Citado 2 vezes nas paginas 14 e 15.

JORGENSEN, P. C. Software Testing: A Craftman’s Approach. [S.l.: s.n.], 2013. Citado na
pagina 13.

KIF. 2019. Disponivel em: <https://github.com/kif-framework/KIF>. Acesso em: 28/10/2019.
Citado na pégina 20.

MEILIANAA IRWANDHI SEPTIANA, R. S. A. D. Comparison analysis of android gui testing
frameworks by using an experimental study. 2018. Citado 2 vezes nas paginas 12 e 23.

MIXPANEL. 2018. Disponivel em: <https://mixpanel.com/trends/#report/iphone_models>.
Acesso em: 28/10/2019. Citado 2 vezes nas paginas 16 e 17.

MYERS, G. J. The Art of Software Testing. [S.1.: s.n.], 2004. Citado na pédgina 13.

SINAGA, A. M.; ADIWIBOWO, P.; SILALAHI, A.; YOLANDA, N. Performance of automation
testing tools for android applications. 2018 10th International Conference on Information
Technology and Electrical Engineering (ICITEE), p. 534-539, 2018. Citado na pagina 23.

STATISTA, Smartphone users worldwide 2016-2021. 2019. Disponivel em: <https://www.statista.
com/statistics/330695/number-of-smartphone-users-worldwide/>. Acesso em: 28/10/2019. Ci-
tado na pagina 11.

https://github.com/google/EarlGrey
https://github.com/google/EarlGrey/blob/master/docs/api.md#synchronization-apis
https://github.com/google/EarlGrey/blob/master/docs/api.md#synchronization-apis
http://talkingabouttesting.coursify.me/
http://talkingabouttesting.coursify.me/
https://github.com/kif-framework/KIF
https://mixpanel.com/trends/#report/iphone_models
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

54 Referéncias

TRAVASSOS, G. H. Introdu¢do a engenharia de software experimental. 2002. Citado na pagina
12.

XCTEST. Disponivel em: <https://developer.apple.com/library/archive/documentation/
DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html>. Acesso em:
28/10/2019. Citado na pagina 18.

XCUITEST. 2019. Disponivel em: <https://developer.apple.com/library/archive/documentation/
DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html>. Acesso em:
28/10/2019. Citado na pagina 18.

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html

	Folha de rosto
	Resumo
	Lista de ilustrações
	Lista de tabelas
	Sumário
	Introdução
	Contextualização e Motivação
	Objetivos
	Organização do Trabalho

	Revisão Bibliográfica
	Considerações Iniciais
	Teste de Software
	Importância e Definição de teste
	Fases de Teste
	Técnicas de Teste

	Teste em Dispositivos Móveis
	Testes de Interface do Usuário (UI)
	Ambiente de Teste
	Acessibilidade
	Ferramentas de teste para plataforma iOS
	XCode
	XCTest
	XCUITest
	EarlGrey
	KIF

	Considerações Finais

	Planejamento do Trabalho
	Metodologia
	Planejamento
	Seleção dos Frameworks
	Seleção dos Critérios de Avaliação
	Seleção do Aplicativo
	Seleção dos Casos de Testes

	Preparação

	Resultados e Discussão
	Resultados
	Critérios Gerais
	Critérios Técnicos

	Análise e Discussão
	Configuração Inicial
	Documentação
	Depuração
	Interação com elementos
	Performance
	Sincronização
	Processo

	Considerações Finais

	Conclusão
	Contribuições

	Referências

